Metabolic fates of U-14C-labelled monosaccharides and an enzyme-treated cell-wall substrate in the fowl.

نویسنده

  • C J Savory
چکیده

A major benefit of supplementing non-ruminant feedstuffs with exogenous enzymes is presumed to be the degradation of plant cell-wall polysaccharides to metabolizable monosaccharide residues. In the present study, metabolic fates of (U-14C-labelled, 10 mM) glucose, galactose, mannose, xylose and arabinose were compared in the fowl, by measuring recoveries of 14C radioactivity in exhaled carbon dioxide excreta and body tissues after administration either by wing vein (iv) or into the crop (ic). A further comparison was made with a tube-fed, enzyme-treated, U-14C-labelled cell-wall substrate, Festuca arundinacea, and a final experiment tested possible competition for absorption between different cell-wall residues. Delays between iv and ic treatments in recovery of 14C in CO2, which were assumed to reflect intestinal absorption, indicated that xylose was absorbed more slowly than glucose and galactose, but faster than mannose and arabinose. Total recoveries of 14C in CO2 and excreta over the whole test period indicated that metabolizabilities were highest with glucose, galactose and mannose, and lowest with arabinose. After testing, 14C recovery in caecal contents was highest with ic arabinose, and recoveries in body tissues, with all sugar treatments, were in the order liver greater than breast and leg muscle greater than abdominal fat greater than plasma. Results with the Festuca substrate showed similar patterns of recovery in body tissues and confirmed an increase in metabolizability with addition of enzyme. The timing of the 14CO2 response with Festuca and a wet enzyme pretreatment was broadly similar to a 'predicted Festuca' response, based on the composition of the substrate and the measured responses with individual (ic) monosaccharides. There was no evidence of any competition for absorption or metabolism among cell-wall residues. It was concluded that glucose release from cellulose is potentially the most important product of cell-wall degradation to contribute to enzyme enhancement of metabolizable energy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Metabolic Stability of Carbohydrates in Walls of Hyphae of Aspergillus clavatus

The metabolic stability of carbohydrates in walls of hyphae of Aspergillus clavatus was investigated through measurements of mycelial isotope distribution from [U14C]glucose and the ,H/14C ratios of re-isolated monosaccharides, when the organism was grown on labelled glucose as sole carbon source. The results suggest that glucose and glucosamine became metabolically inert once they had been inc...

متن کامل

Characterization of an Interesting Novel Mutant Strain of Commercial Saccharomyces cerevisiae

The yeast strains that are resistant to high concentration of ethanol have biotechnological benefits and aresuitable models for physiology and molecular genetics research fields. A novel ethanol-tolerant mutant strain,mut1, derived from the commercial Saccharomyces cerevisiae showed higher ethanol production, and alsodemonstrated resistance to ethanol but not to other alcohols...

متن کامل

Gluconeogenesis from acetone in starved rats.

To non-anaesthetized rats starved for 3 days, [U-14C]acetone, NaH14CO3, L-[U-14C]lactate, [2-14C]acetate or D-[U-14C]- plus D-[3-3H]-glucose was injected intravenously. From the change in the plasma concentration of labelled acetone versus time after the injection, the metabolic clearance rate of acetone was calculated as 2.25 ml/min per kg body wt., and its rate of turnover as 0.74 mumol/min p...

متن کامل

A review on plant peroxidases

Plant peroxidase (EC: 1.11.1.7) a heme-containing protein which is widely used in plants, microorganisms and animals. This two - substrate enzyme, catalyze the hydrogen peroxide into water with   oxidation of many organic and inorganic substrates that all of them can be used to measure enzyme activity. Although it’s specific substrate is hydrogen peroxide. Calcium and at least four disulfide bo...

متن کامل

Radioactively Labelled Phytic Acid from Maturing Seeds of Sinapis alba

Maturing seeds of Sinapis alba were incubated with D-[U-14C]glucose, sodium [l-14C]acetate or m>>0-[U-14C]inositol in order to prepare radioactively labelled phytic acid with high specific activity. Although each substrate was utilized for the biosynthesis of phytic acid, maximum incorporation of radioactivity into phytic acid was found with rayo-inositol. Radiochemical purity of the [U-14C]phy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The British journal of nutrition

دوره 67 1  شماره 

صفحات  -

تاریخ انتشار 1992